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Notes 

Least Square Regression with Multinomials 

of Restricted Amplitudes* 

1. INTR~OUCTI~N 

The usual least squares fit to a set of data points yields the minimum standard 
deviation and the best unbiased estimate of the coefficients of the fit. If one merely 
wants a compact way of representing a large number of data points, this is a good 
method to use. However, what is often desired is not the best statistically unbiased 
fit to the data, but rather the best representation of the function underlying the 
data; i.e., one wishes to determine whether performance will be improved by a 
right or left turn of the valve. Thus, the least squares method may give higher order 
coefficients which are large and of opposing signs, while they should be small and 
of the same sign. In order to eliminate this effect we will introduce additional 
information and some bias based on our intuitition or knowledge of the underlying 
function. Each problem must be treated individually. The appropriate amount 
of bias to introduce requires careful consideration and is not amenable to a rigorous 
treatment for a general class of problems. What we present here is the general 
idea, so that others may adapt it for their own problems. We know of no curve- 
fitting recipe which can be used blindly. 

We will employ two pieces of information which the usual least squares method 
does not use. First, we include an estimate of the absolute error in each data point, 
not just the relative error. We use the fact that the function underlying the data 
misses a typical set of data points by an average of one standard deviation. Our 
fit must do likewise if it is to have a chance of duplicating the underlying function. 
To fit the data too closely is just as bad as missing the data by too much. This 
is justified if we have a large number of points, if the errors have a normal distri- 
bution, and if our error estimates are good. Second, we include the knowledge 
(or perhaps bias) that the underlying function does not have large high-order 
coefficients. We include these two pieces of information by requiring that the sum 
of the squares of the coefficients be a minimum, subject to the constraint that the 
x2 be equal to the number of data points. 

This method is similar to Ridge Regression [I]. The set of simultaneous equations 
to be solved for each point along the ridge are the same. However, instead of using 
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the characteristics of the function along the ridge to determine the point to be used, 
we use the simpler criterion that x2 == N. This information is usually available 
for physics-type applications and greatly simplifies the analysis. 

2. THE METHOD 

Assume that we have N data points, fk , as a function of the n variables, zlk ,..., z,~ 
(where zIK = 1, k = 1, N). Note that {zIk ,..., tnk} is, in general, a point in a multi- 
dimensional space. We wish to fit data with a multinomial 

(1) 

In accord with the ideas expressed in the introduction, we minimize the function 

Q = x2 + Cf aj2 
j=:! 

where 

wk = I/ek2 (4) 

and e, is the estimated error in fk . If C = 0, then we have the usual least squares 
method. The variables should be in standard normal form, but this is generally 
not appropriate for Physics problems; however, the bias against large high-order 
coefficients is not lost if the zj’s are simply scaled so that they range from 0 to 1. 
Thej = 1 term is excluded from the sum over a: because a, is the constant and 
we only wish to prevent the other coefficients from becoming large. This form was 
suggested by that used by Powell for minimizing the discontinuities in the third 
derivative when curve fitting by splines in one variable [2]. 

In order to obtain a system of equations for the coefficients, we differentiate Q 
with respect to ai and set it equal to zero to obtain 

or 
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where 

We define 

so that 

C ~i(Aij + CSij) - Bi = 0 i = 1, n. 
i 

(9) 

(10) 

If C = 0 this is the usual set of n linear equations for n unknowns, aj, to be solved 
simultaneously. We can convert Eq. (10) to this form by defining 

Ajj = Aij + C6;j (11) 

That is, simply add C to each of the diagonal elements of the matrix A except the 
first. 

As a bonus this makes the system of equations to be solved less likely to be 
ill-conditioned, which causes difficulties in obtaining a solution. Now, for any 
constant C, we can solve the set of equations for the ai. The method we use is 
to search for that C which gives x2 = N. 

If one does not have a sufficient number of variables to achieve the fit to the 
desired accuracy, e, , or if the variables have been poorly chosen, it will be 
impossible to obtain x2 f N. This would generally indicate that either more 
variables are needed, a more suitable set of variables is needed, or the error term, 
e, , has been assumed smaller than the data warrants. It may occur that as C is 
increased to give x 2 = N, some of the Uj will go to zero. This seems to be a clear 
indication that these variables are not needed to achieve a fit to the desired accuracy. 
Note that the fit with aj = 0 is already a fit without the jth variable unlike the 
normal polynomial fit which requires another pass when one suspects that one of 
the variables is unnecessary. 

3. EXAMPLES OF THE METHOD 

This method was applied to the problem of fitting a two-dimensional function 
with random errors. The function fitted was 
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where (x, , JQJ is a compact notation for the vector 

and where 

g(x, y) = 5 zi = 1 + s -t -v + x2 + xy + 1"" + x241 + XJ'" + x2.vp, (13) 
i=l 

and de was a random variable chosen from a set of random numbers generated 
with a gaussian distribution with mean 0 and a standard deviation of u -= 0.1. 
We used an evenly spaced rectangular mesh of 16 points with a range from 0 to 1 
in both x and I?. While one of the major problems of curve fitting is to choose the 
proper functional form to fit the data. here we assumed the correct functional 
form; i.e., we fitfk with 

F(x, y) = a, + a,x i- a, y -t u.,x" + u5xy + a, y" + +x24' + a,sy2 + agx",v2. 

(14) 

We generated 4 different sets of random fluctuations, d, , and fit the function in 
Eq. (12) for each data set. The resulting coefficients for all 4 data sets are given in 
Table I for both the biased and unbiased fits. For the biased fits we assumed 
e, = u = 0.1. Table I also lists the constant, C, x0’. a measure of the deviation 
from the data points, 

x0’ = f (fk - F(x, , ~~))~/e~“, 
x‘=l 

and x1 , the deviation from the underlying function, 

X 12 = I$ (g(xk , ~1~) - Fix, , ~‘-‘k))“/%~. 

(15) 

(16) 

We were unable to obtain a biased fit for the fourth data set because the ~0” 
for the unbiased fit was already greater than 16. For the first three data sets, 
however, it is seen that the coefficients from the biased fits are dramatically superior 
to the unbiased coefficients (a perfect fit would have given ni = 1, i == 1, 9.). 
Also note that the coefficients are reproducible from one data set to another when 
biasing is used, but not the unbiased fits. The x12’s for the biased fits are smaller 
than those for the unbiased fits, again indicating better agreement with the under- 
lying function. The most dramatic improvement is in the sum of squares of the 
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TABLE I 

Comparison of Coefficients in Biased and Unbiased (C = 0) Fits for 4 Equivalent Sets of Data 
PointsO 

Data set 1 2 3 4 1 2 3 

C 0 0 0 0 31.2 21.1 25.1 
X0* 2.1 8.5 8.0 17.9 16.0 16.0 16.0 
Xl2 8.2 12.1 5.0 10.9 2.9 10.8 2.9 
aI 0.86 1.22 .84 1.01 1.03 1.17 1.02 
a? 1.70 0.19 1.56 1.41 0.97 0.78 0.99 
a3 1.46 0.43 1.60 1.00 0.91 0.88 1.03 
a4 0.42 1.67 0.60 0.62 1.03 1.13 1.04 
6 -3.80 3.36 -~ 1.92 -2.22 1.01 1.03 1.02 
a6 0.64 1.41 0.60 1.08 1.04 0.93 1.00 
a7 5.60 -0.64 3.71 4.55 0.98 1.11 .99 
a8 5.42 -1.34 3.35 4.30 0.99 0.91 0.92 
as -3.24 2.79 -1.33 -2.91 0.91 0.97 0.87 
E 82.9 18.6 27.8 49.5 0.02 0.14 0.03 

a xo2 is the deviation from the data. x1* is the deviation from the underlying function. E is the 
sum of the squares of the errors of the ai . 

TABLE 11 

Comparison of Coefficients in Unbiased 
(C = 0) and Biased Fits to g(x, y) = x + y a 

c 0 31.6 

X02 8.0 16.0 
Xl2 5.0 4.9 
aI -0.03 0.01 
a3 1.11 0.90 
a3 1.12 0.91 
a, -0.08 0.10 
a5 -0.58 0.14 
4 -0.08 0.09 
a7 0.54 -0.02 
a8 0.47 -0.05 
a9 -0.47 -0.09 
E 1.11 0.07 

“xoz is the deviation from the data. xl2 is the 
deviation from the underlying function, g. E is the 
sum of the squares of the errors of the a,. 
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errors of the coefficients. Figure 1 illustrates the relationships between the under- 
lying function, the data points used for one of the data sets, the unbiased fit and the 
biased fit for one of the data sets. Even with the deviations from the underlying 
function magnified by a factor of 10, the biased function maintains the same 
curvature in each of the four cross-sections; the unbiased fit, on the other hand, 
changes curvature twice in going from x = 0 to x = 1, under this magnification. 

We also generated one data set from an underlying function 

with u = 0.02. This function is presumably not as well suited for the biased 
method since we used the same 9-term F(x, y) given by Eq. (14) to fit the data and 
all the coefficients should not be the same size. The coefficients are given in 
Table II. Here the superiority of the biased method is not quite so dramatic, 
but it definitely improves the fit. 

FIG. 1. Relationships between the underlying function, the data points used, the unbiased 
fit, and the biased fit for one of the data sets generated in four cross-sections of the two-dimen- 
sional space. The deviations of the last three functions from the underlying function have been 
magnified by a factor of 10 for illustrative purposes. Solid curve, underlying function, g(x, y) in 
Eq. (13); x’s, g(x, y) + lO[data points-g(x, y)]; dotted line, g(x, y) + 10 [unbiased fit-g(x, y)]; 
dashed line, g(x, y) + IO[biased fit-g(x, y)]. 
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4. CONCLUSIONS 

The method for smoothing data which has been presented here is one way of 
putting into the least squares fitting routine something which we with our prejudices 
“know” in addition to the actual data; i.e., that the coefficients of the fit which we 
want are not large and of opposing signs, but are rather small and to an extent 
have the same signs. There are no doubt many variations of biasing in which more 
or less of the above prejudice is used. For example, one might include only coeffi- 
cients above a sertain order in the sum in Eq. (2) or weight the coefficients above 
a certain order in the sum in Eq. (2) or weight the coefficients withj orj2 in the sum 
so as to further discriminate against high powers. 

The biased fit will, of course, not be as close to the data points as the unbiased 
fit. It does not like sharp peaks and sudden changes (which might just be random 
errors in the data). Only if the data demands it will the fit reluctantly indicate 
these. This is useful when one wishes to avoid the possibility of spurious peaks in 
the fit, but one should be cautious in investigating peaks with biasing. 

It is impossible with a simple example to convey the frustration involved in 
fitting real data. Low-order polynomials miss the data giving too large a x2, 
while high-order polynmials insist on looping through the data and have huge 
coefficients of opposing signs forcing one to use double and then quadruple 
precision arithmetic to evaluate a polynomial fit to data with only 3 significant 
figures. Curve fitting is still partially an art. There is no substitute for choosing 
the correct functional form. However, by sacrificing a small amount of closeness 
of fit to the data, the method presented here eliminates the large coefficients. As 
a bonus, it makes the set of equations involved less ill-conditioned. Also, the 
biased fit may be a better representation of the function underlying the data. In 
particular, it may give a much better representation of the derivative of the 
underlying function, as shown in Fig. 1. 
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